Class 6 Objectives

Upon completion of this lesson, the student will be able to:
- describe the outcomes associated with hypo and hypervolemia.
- distinguish between the different etiologies of major electrolyte imbalances.
- list the manifestations of electrolyte imbalances.
- identify normal distribution of ICF and ECF.
- state the normal serum values for Na, K, Cl, Mg, PO₄, Ca.

Starling’s Law of the Capillary

- Fluids leave (filtration) or enter (re-absorption) the capillaries depending on how the pressure in the capillary and interstitial spaces relate to one another.
- Volume re-absorbed is similar to volume filtered: “A net equilibrium”
- Regulates relative volumes of blood & interstitial fluid
Capillary Exchange
- The 5% of blood in the systemic capillaries = the bulk of blood that exchanges materials with systemic tissue cells
- Substances that pass through thin capillary walls into interstitial fluid and then into cells are: nutrients & oxygen
- Substances that are secreted by tissue cells and removed from them are: wastes & CO2

Fluids
- Distribution of total body water (TBW)
 - 60% of adult body weight is fluid
 - Gender, body mass & age considerations
 - Intracellular (ICF, within cells = 40% of body weight)
 - Extracellular (ECF, plasma, interstitial & lymph =20% of body weight)
- 1 Litre water = 2.2lb or 1 kg

Developmental Differences
- Infants & young children
 - Four areas of immature functioning
 - Increased fluid intake and output relative to size
 - Total body fluid is 20% more than adults
 - Greater surface area relative to size: > water loss through skin
 - Increased metabolic rate up to 2 years
 - Immature kidney function
 - requires more fluid to excrete wastes
Fluid Shifts
“Third Spacing”

- Excess fluid in interstitial spaces and connective tissues between cells [edema]
 - OR
 - Excess fluid in potential spaces [effusion]
 - peritoneal cavity
 - pericardial sac
 - synovial cavities of joints
 - alveoli or intra-pleural spaces

Etiology
- Caused by an increase in filtration and/or decrease in reabsorption due to altered capillary forces

Pathophysiology
- Lymph edema
- Angioedema

Mechanisms causing third spacing & edema
- Massive inflammation
- Venous obstruction
- Increased blood volume
- Low serum albumin

Hypovolemia

- A decrease in the ECF volume
- Intravascular and interstitial volume
- Isotonic volume deficit may be due to
 - Decreased intake of isotonic fluids
 - Or excessive
 - Vomiting or diarrhea
 - Hemorrhage
 - Urine output
Hypovolemia

- Hematocrit (Hct) is sensitive to fluid shifts
 - volume (%) of erythrocytes in whole blood
 - 40-54 mL/dL males
 - 37-47 mL/dL females
 - 11.2-16.5 mL/dL children
- BUN will be elevated d/t < volume
 - 11-23 mg/dL

Hypovolemia: manifestations

- Decreased tissue perfusion
 - Check capillary refill time
- Decreased blood volume
 - Hypotension, tachycardia, oliguria
- Tissue dehydration
 - Loss of skin turgor
 - Possible temperature elevation

Hypovolemia

- Nursing Responsibilities:
 - calculate I & O frequently
 - minimal urinary output = 30cc/hr
 - check urine specific gravity
 - check O2 saturations
 - draw & analyze blood gases
 - auscultate lungs (side to side)
 - check temperature distal from heart
 - give isotonic solutions (oral or IV)
 - Normal saline, dextrose, Ringer’s lactate
 - give a fluid bolus as ordered
Hypervolemia

- Excess of isotonic fluid in the intravascular and interstitial spaces
 - Isotonic fluid retention
 - Oliguric state r/t renal failure
 - Secondary Hyperaldosteronism
 - Inappropriate renal reabsorption of water and sodium, and increased renal secretion of potassium
 - Iatrogenic hypervolemia

Hypervolemia

- Path
 - An excess in blood volume results in elevated CHP and third spacing
 - Clinical manifestations
 - Edema
 - Hypertension
 - Bounding pulse
 - Increased urinary output

Major Electrolytes

- Electrolytes
 - Na+, K+, Ca++, Mg+ = cations
 - HCO-3, Cl-, PO-4 = anions
- ICF = K+
- ECF = Na+
 - osmolality
 - osmolarity
 - capillary dynamics
Hyponatremia
(Na+ < 135 mEq/L)

- Low sodium determined by blood chemistry
 - The most common electrolyte imbalance:
 - 2.5% of hospitalized patients
 - Sodium supports neuron transmission
- Mechanism and examples
 - Free water gain
 - Deficient sodium intake
 - Renal sodium loss in excess of water
 - Water in excess of sodium gain

Hyponatremia
(Na+ < 135 mEq/L)

- Manifestations
 - Water excess → rapid weight gain
 - Na+ loss → neurological symptoms
 - irritability, seizures, < LOC
 - Muscle cramps
 - Anorexia/ Nausea/Vomiting (subtle signs)
- Treat water excess
 - Fluid restriction (I&O)
- Treat sodium loss
 - Oral or IV sodium

Hypernatremia
(Na+ > 145 mEq/L)

- Etiology
 - Water loss or sodium gains
 - Elderly / or comatose patients
 - Na+ intake > water intake
 - Diabetes insipidus (excessive fluid loss) < production of ADH
 - Damage to hypothalamic thirst center?
 - Tumor or CVA?
- Manifestations
 - Thirst, dry tongue
 - Restlessness; < LOC; Coma; Intracranial bleeds
 - Weight changes
Hypernatremia
(Na+ >145 mEq/L)

Treatment (Rx)
- Dilute Na+ and promote secretion
- Fluids (5% D/W) and diuretics
- Always check LOC
 - loose alertness & orientation
 - sepsis, head injury, intracranial bleed
- Sodium pulls fluid to cause blood vessels to burst

Potassium (K+)
3.5-5.0 mEq/L

- Primarily an intracellular ion; small amount in plasma is essential for normal neuromuscular and cardiac function
- Maintained by the cellular sodium-potassium pump
- K+ changes in altered excitability of muscles
- Eliminated by kidneys
 - renal problems causes hyperkalemia
 - Insulin: causes K+ to move from ECF to ICF
 - Acidosis, trauma to cells, and exercise
- cause K+ to move from ICF to ECF:

Hyperkalemia
(K+ > 5.5 mEq/L)

- Major Causes
 - Increased potassium intake
 - excess or rapid delivery of K+
 - penicillin containing K+
 - Massive blood transfusion with irradiated packed red cells
 Buntain and Pabaal (1999)
 - Shift of K+ from the ICF to ECF
 - Acidosis, uncontrolled DM
 - increased cell lysis (e.g. cytotoxic drugs)
 - Decreased renal excretion
 - Digitalis toxicity, renal failure, oversecretion of potassium sparing diuretics (spiroaldactone)
Hyperkalemia
$K^+ > 5.5 \text{ mEq/L}$

- Mainfestations:
 - Weak skeletal muscles/paralysis $> 8 \text{ mEq/L}$
 - Paresthesias
 - Irritability
 - Abdominal cramping with diarrhea
 - Irregular pulse \rightarrow EKG changes \rightarrow Cardiac standstill
 - EKG changes
 - Peaked T-waves and a shortened QT interval occur
 - Depressed ST segment and widened QRS interval

Hyperkalemia
$K^+ > 5.5 \text{ mEq/L}$

- Management
 - Eliminate K+
 - Diuretics (Lasix)
 - Dialysis
 - Kayexalate
 - Increased fluids
 - IV insulin
 - Cardiac monitor

Hypokalemia
$K^+ < 3.5 \text{ mEq}$

- Major causes
 - $<$ intake of potassium or $>$ cellular uptake of potassium
 - Insulin: promotes K+ uptake by muscle & liver cells
 - When insulin is given: K+ goes into ICF \rightarrow < serum K+ level
 - Uncontrolled diabetes mellitus:
 - Glucose: osmotic diuretic \rightarrow potassium via urinary excretion
 - Diabetic Ketoacidosis: H+ ions in ECF \rightarrow exchange across cell membranes \rightarrow K+ is first elevated and then K+ stores are excreted via urine
Hypokalemia
K+ < 3.5 mEq

Epinephrine: promotes uptake into cells
- stress, acute illness, hypoglycemia
Excessive GI loss: diarrhea & ng suction
- metabolic alkalosis
Diuretics: Lasix (watch K+ levels)
Excessive renal excretion
- elevated aldosterone
- diuresis

Signs & Symptoms
- Muscle weakness: hypotonia
- Cardiac dysrhythmias (T-wave inversion or PVCs)
- Atony of smooth muscle
 - intestinal distention
 - constipation
 - paralytic ileus
 - urinary retention
- Confusion or disorientation

Management
- Administer KCL slowly and accurately
 - dilute properly with other IV fluids
 - 10 mEqs/1 hour
 - can cause pain and necrosis of veins
 - use central IV line for large rapid amounts
- Bring pt out of immediate danger & restore gradually
- Consider discontinuing diuretic therapy
- Consider chloride for metabolic alkalosis
Calcium
8.8 - 10 mg/dL

- Major functions:
 - Transmission of nerve impulses
 - Cardiac muscle contractions
 - Blood clotting factor
 - Formation of teeth & bone
 - Muscle contraction

- Requires:
 - Vitamin D
 - Parathyroid hormone (PTH)
 - Calcitonin from thyroid gland

http://lpi.oregonstate.edu/infocenter/minerals/calcium/capth.html

Hypocalcemia
Ca+ < 8.5 mg/dL

- Nutritional deficiency of calcium or Vitamin D
- Parathyroid deficiency d/t surgical removal
- Children & elderly d/t dietary deficiency
- Bone cancer: excess bone formation
 - "Hungry Tumor" syndrome
 - Treatment of prostate cancer with estrogen depletes ECF calcium levels
- Blood transfusions
 - preserve blood with citrate & this binds with calcium
Hypocalcemia
Ca⁺ < 8.5 mg/dL

- Manifestations:
 - Chvostek’s sign
 - Trousseau’s sign
 - Dysrhythmias: < threshold for depolarization in cardiac cells
 - Paresthesias: “pins & needles”
 - Abdominal cramping & diarrhea
 - Tetany, Seizures (severe hypocalcemia)

Hypercalcemia
Ca⁺ > 10.5 mg/dL

- Malignancies or hyperparathyroidism
 - PTH secreting tumor (adenoma)
 - Skeletal calcium secreted into bloodstream
 - Metastatic breast cancer & multiple myeloma
 - Prolonged immobility: loose Ca⁺ from bone into blood
 - Osteoporosis: Ca⁺ is liberated into bloodstream
 - Manifestations:
 - lethargy/ weakness/ fatigue/ constipation
 - pathogenic fractures → calcium loss from bone

Phosphate (PO₄⁻)
3.0 - 4.5 mg/dL or 1.8 - 2.6 mEq/L

- Stored with Ca⁺ in bones & teeth
 - PO₄⁻ & Ca⁺ are equilibrated
 - > Ca⁺ = < PO₄⁻ excreted by kidneys
- Hypophosphatemia: < 2.7 mg/dL
 - clinical manifestations
 - confusion, weakness, seizures, numbness, coma
- Hyperphosphatemia: > 4.5 mg/dL
 - common in renal failure
Magnesium (Mg+): 1.5 - 2.5 mEq/L

- Second most abundant ICF cation
- Essential for neuromuscular function
- Changes in serum Mg+ levels affect other electrolytes
- **Hypermagnesemia:** > 2.5mEq/L
 - Muscle weakness, bradycardia, hypotension, nausea & vomiting
- **Hypomagnesemia:** < 1.5mEq/L
 - Increased neuromuscular irritability
 - Muscle spasms, tetany, seizures

References